Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

N^{1} -(4-Bromophenyl)- N^{2} -hydroxy-2-oxo-2-phenylacetamidine

Serkan Soylu,^a* Murat Taș,^b Hümeyra Batı^b and Nezihe Çalışkan^a

^aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: mssoylu@omu.edu.tr

Received 5 January 2005 Accepted 29 March 2005 Online 30 April 2005

In the title compound, $C_{14}H_{11}BrN_2O_2$, which has the oxime group in an *E* conformation, molecules are linked by strong $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds into chains of edge-fused rings, unlike closely related compounds.

Comment

The oxime group (C=N-OH) possesses a stronger hydrogen-bonding capability than alcohol, phenol and carboxylic acid groups (Marsman *et al.*, 1999). Intermolecular hydrogen bonding has received considerable attention among the range of directional non-covalent intermolecular interactions, which combine moderate strength and directionality, in the design of compounds with supramolecular structures (Karle *et al.*, 1996). The hydrogen-bonding geometry of molecules containing the oxime group and the nature of the supramolecular interactions have been studied (Glidewell *et al.*, 2004). The crystal structure determination of the title compound, (I), was carried out to determine the strength of

the hydrogen-bonding capabilities of the oxime group, in order to establish the molecular arrangements and to compare the geometry of the oxime moiety with those found in the related compounds N^1 -(2,6-dimethylphenyl)- N^2 -hydroxy- α -oxo- α -phenylacetamidine, (II) (Soylu, Taş, Saraçoĝlu *et al.*, 2004), *N*-(3-chloro-4-methoxyphenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, (III) (Soylu *et al.*, 2003), 2-[benzoyl-(hydroxyimino)methylamino]benzoic acid, (IV) (Soylu, Taş, Batı *et al.*, 2004), *N*-hydroxy-2-oxo-2,N'-diphenylacetamidine, (V) (Büyükgüngör *et al.*, 2003), *N*-hydroxy-N'-(1-naphthyl)-2phenylacetamidin-2-one, (VI) (Hökelek *et al.*, 2004*a*), and *N*-(3-chloro-4-methylphenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, (VII) (Hökelek *et al.*, 2004*b*).

Compound (I) consists of two aromatic rings linked through a monooxime group (Fig. 1 and Table 1). The 4-bromophenyl group shows orientional disorder, with a final C10A-C14A/ Br1A to C10B-C14B/Br1B ratio of 49.1 (3):50.9 (3)% and an interplanar angle of 27.6 (2)°. The molecule has an E configuration at the C=N bond, with a C2-C1=N1-O1 torsion angle of 172.54 (19)°, which deviates slightly from the values reported in compounds (II)-(VII) (169-174°). Other steric effects of the oxime group may influence the differences; in (I), atom O1 of the oxime group behaves as a donor, resulting in the formation of a nearly linear $O1-H1\cdots O2^{1}$ hydrogen bond (see Table 2). This intermolecular hydrogen bond forms a C(6) graph-set chain (Bernstein et al., 1995), viz. O1-H1···O2-C2-C1-N1, running along the [001] direction with glide-plane symmetry $(x, 1 - y, \frac{1}{2} + z)$ (Fig. 2). Additionally, atom N2 of the amine group acts as a donor in an intermolecular hydrogen bond with atom O1 of an adjacent oxime moiety. This interaction links the molecules into N-

An ORTEP-3 (Farrugia, 1997) drawing of (I), with displacement ellipsoids shown at the 50% probability level.

Figure 2

A chain of edge-fused $R_2^2(10)$ and $R_4^4(14)$ rings in (I), viewed down the *a* axis. For clarity, only one chain is shown, and H atoms bonded to C atoms and the minor component of the disordered benzene ring have been omitted. [Symmetry codes: (i) x, 1 - y, $\frac{1}{2} + z$; (ii) -x, y, $\frac{3}{2} - z$.]

 $H \cdots O$ hydrogen-bonded dimers that have a graph-set motif of $R_2^2(10)$ (Fig. 2). Propagation by translation of the $R_2^2(10)$ motif linking parallel C(6) chains then generates a polymeric chain of edge-fused rings, with $R_2^2(10)$ and $R_4^4(14)$ motifs, along the c axis (Fig. 2).

The results obtained in this study indicate that there are significant differences between the molecular packings of (I) and of the related oxime compounds (II)-(VII). In these latter structures, the crystal packing is mainly stabilized by intermolecular hydrogen bonds in which the whole hydrogenbonding pattern of the oxime moiety has a centre of symmetry and can be described according to graph-set notation as $R_2^2(6)$ (Bernstein et al., 1995). In (I), the molecules form polymers with a chain of edge-fused rings as noted above, and there is also one $C-H \cdots \pi$ interaction involved in the molecular packing (Table 2).

There is also a weak intramolecular N−H···O hydrogen bond (N2-H2···O1; Table 2). This interaction has been reported in the related structures (II)-(VII).

Experimental

The title compound was prepared from a mixture of ω -chloroisonitrosoacetophenone (2.75 g, 0.015 mol) and 4-bromoaniline (2.58 g, 0.015 mol) in ethanol (20 ml). The mixture was stirred for 1 h and then water (20 ml) was added. The precipitated product was filtered off and recrystallized from ethanol.

Crystal data

$C_{14}H_{11}BrN_2O_2$	$D_{\rm x} = 1.624 {\rm Mg} {\rm m}^{-3}$
$M_r = 319.16$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 8747
a = 21.593 (5) Å	reflections
b = 13.328 (5) Å	$\theta = 1.8-28.3^{\circ}$
c = 9.352 (5) Å	$\mu = 3.15 \text{ mm}^{-1}$
$\beta = 104.008 \ (5)^{\circ}$	T = 293 (2) K
$V = 2611.4 (18) \text{ Å}^3$	Prism, yellow
Z = 8	$0.30 \times 0.28 \times 0.26 \text{ mm}$
Data collection	

ata collection

Stoe IPDS-II diffractometer	2023 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.054$
Absorption correction: integration	$\theta_{\rm max} = 28.3^{\circ}$
(X-RED32; Stoe & Cie, 2002)	$h = -19 \rightarrow 28$
$T_{\min} = 0.452, \ T_{\max} = 0.495$	$k = -17 \rightarrow 17$
13 425 measured reflections	$l = -12 \rightarrow 12$
3210 independent reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.041$	independent and constrained
$wR(F^2) = 0.089$	refinement
S = 0.99	$w = 1/[\sigma^2(F_a^2) + (0.0384P)^2]$
3210 reflections	where $P = (F_{a}^{2} + 2F_{c}^{2})/3$
234 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

All H atoms bonded to C atoms were refined using a riding model, with C-H distances of 0.93 Å. The positions of all other H atoms were refined freely. For all H atoms, $U_{iso}(H)$ values were set at $1.2U_{eq}$ (parent atom). The 4-bromophenyl group shows two-position orientational disorder, the final site-occupancy factors for C10A-C14A/Br1A and C10B-C14B/Br1B being 49.1 (3) and 50.9 (3)%, respectively.

Table 1

Selected geometric parameters (Å, °).

O1-N1	1.426 (3)	N2-C1	1.360 (3)
N1-C1	1.288 (3)	C1-C2	1.515 (3)
N1-O1-H1	107 (3)	C1-N2-C9	125.9 (2)
C1-N1-O1	109.8 (2)	C3-C2-C1	120.0 (2)
O1-N1-C1-N2	4.3 (3)	N1-C1-C2-O2	-112.8 (3)
C9-N2-C1-N1	-158.6 (2)	N2-C1-C2-O2	56.6 (3)

Table 2

Hydrogen-bond geometry (Å, °).

Cg3 is the centre of the C9/C10A-C14A benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$01-H1\cdots O2^{i}$ $N2-H2\cdots O1^{ii}$ $N2-H2\cdots O1$ $C4-H4\cdots Cg3^{ii}$	0.81 (4)	2.05 (4)	2.850 (3)	171 (4)
	0.78 (3)	2.24 (3)	2.975 (3)	156 (3)
	0.78 (3)	2.28 (3)	2.605 (3)	106 (3)
	0.93	2.93	3.722 (4)	143

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) $-x, y, -z + \frac{3}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1096). Services for accessing these data are described at the back of the journal.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Büyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, 0883-0885.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Glidewell, C., Low, N. J., Skakle, M. S. J. & Wardell, L. J. (2004). Acta Cryst. C60, o245-o247.
- Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109-o111.
- Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, 0406-0408.
- Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128-7133.
- Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484-1491.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Soylu, S., Taş, M., Andaç, Ö., Batı, H., Çalışkan, N. & Büyükgüngör, O. (2003). Acta Crvst. E59, 01532-01534.
- Soylu, S., Taş, M., Batı, H., Çalışkan, N. & Büyükgüngör, O. (2004). Acta Cryst. C60, o263-o264.
- Soylu, S., Taş, M., Saraçoĝlu, H., Batı, H., Çalışkan, N. & Büyükgüngör, O. (2004). Acta Cryst. C60, o115-o117.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.